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Introduction.

Collective excitation spectra of rotational type are associated 
with nuclei possessing an equilibrium shape which deviates 

strongly from spherical symmetry.1
The rotational character of the motion is shown by the energy 

ratios, spins, and intensities, which also give evidence that the 
nucleus possesses axial symmetry and rotates about axes per
pendicular to the symmetry axis.

More detailed information about the collective rotational 
motion is obtained from the moments of inertia, which can be 
determined from the observed rotational energy levels. The 
moments are found to be appreciably smaller than they would 
be if the nucleus performed a rigid rotation and, in addition, 
they have a strong dependence on the nuclear deformation. The 
collective molion of the nucleus has been compared with the 
hydrodynamical flow, assumed irrotational or potential, of a 
liquid drop whose boundary is rotating without change of form. 
The corresponding classical hydrodynamical problem has been 
studied extensively in connection with the theory of rotating stars 
(cf. Lamb). An exact solution has been given in the case of a 
rotating ellipsoid with constant density.2

This potential flow for an ellipsoidal boundary has been used 
by A. Bohr and B. Mottelson with a somewhat generalized 
density distribution such that the surfaces of constant density are 
similar ellipsoids.

1 For a survey of the theory of rotational states and of the available experi
mental evidence, cf. Bohr, 1954; Bohr and Mottelson, 1955. Cf. also Bohr, 
Fröman, and Mottelson, 1955; Alaga, Alder, Bohr, and Mottelson, 1955.

2 For the rotating ellipsoid, the condition of constant pressure at the surface 
can be fulfilled, assuming Newtonian attraction, both in the case of irrotational 
flow and for a flow7 without internal motion. In the case of a nucleus, the surface 
condition, of course, has quite another aspect.

1*
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For the case of an ellipsoid of revolution of constant density, 
rotating about an axis perpendicular to its symmetry axis, the 
moment of inertia is given by

(1)

where a is the major semi-axis, e the eccentricity, and M the mass 
of the nucleus. The nuclear eccentricity may be determined from 
the quadrupole moment of the nuclear shape

where Z is the nuclear charge number, and where the positive 
and negative signs refer to prolate and oblate shape, respectively.

It is found, however, that the moments of inertia, calculated 
from (1) by means of the observed quadrupole moments, are 
smaller than the observed moments of inertia by a factor of about 
three to five. This situation is not appreciably changed by con
sidering the above-mentioned generalized density distribution.

A possible reason for this discrepancy could lie in the assumed 
density distribution. It has been suggested (Johnson and Teller, 
1954) that the protons are more concentrated towards the centre 
of the nucleus than are the neutrons. Such an effect means a 
smaller value of “a” in (2) than in (1). This increases the 
moment of inertia calculated from Qo. Since, however, the ex
pected differences in “a” are only of the order of 20°/o, this 
effect cannot account for more than a minor part of the discre
pancy.

As pointed out by Bohr and Mottelson, another possible 
way of explaining the discrepancy within the framework of the 
potential flow model would be to consider nuclear boundaries 
deviating from the ellipsoidal shape. In order to investigate this 
point, the potential flow has been calculated for some boundaries 
of more general form, illustrated in Figs. 1, 2, and 3.

These calculations, reported in the following, show that the 
moment of inertia as well as the quadrupole moment is quite 
sensitive to relatively small deviations from ellipsoidal shape, 
but indicate that the ratio of 3/Q2, which is the quantity that
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can be directly compared with the experimental data, is affected 
to a much lesser extent.

Our results thus indicate that the model considered cannot 
be expected to account for the observed magnitude of S/Qy, and, 
therefore, suggest significant departures of the collective motion 
from potential llow.

This conclusion is in accord with the recent findings of Bohr 
and Mottelson (1955) who have investigated the validity of the 
assumption of potential flow for the nuclear collective motion, 
and who have shown that important deviations from potential 
flow are to be expected as a consequence of the nuclear shell 
structure. The effect is to increase the moment of inertia, and 
estimates indicate that it is possible in this way to account for 
the magnitude of the observed moments.

Characteristics of the flow and of the considered nuclei.

Assuming a constant density for the nuclear fluid, the velo
city, assumed irrotational, obeys the equations

rot n = 0, div v — 0. (3)

Introducing v = grad ø (for convenience ø is chosen as the 
negative of the velocity potential), we get

J0 = 0. (4)

From the rotation, the boundary obtains a velocity whose 
normal component shall be equal to the normal component of 
the potential flow. Thus, the boundary condition is time-depend
ent. A coordinate system fixed in space is denoted by (X, Y, Z), 
and the rotating system by (rri/z). Then the (xyz) depend on 
(X, F, Z, f). In the following, ø and other quantities are expressed 
in (xyz), and are thus time-dependent.

We first consider the case of an ellipsoid of revolution with 
axes 2 a and 2 b, the symmetry axis being 2 a. The ellipsoid ro
tates about an axis perpendicular to its symmetry axis with an
gular velocity co. In the body-fixed coordinates, the boundary 
condition is constant and given by
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co (a2 — Z>2) xy = -- b2x + -x— a2y, (5)
dx d y

where the axis of rotation is chosen as the z-axis, while the 
x-axis is the nuclear symmetry axis.

The boundary condition is fulfilled by the potential

K a2 — b2
(P M (6) a2 + b

For this flow, one calculates

J- 1 C ^2 / 1 ^«2C4 2 z-x
Erot -\Q V2 dr =2^2, (7)

2.)  2 a (2 — e~)

corresponding to the value (1) for the moment of inertia.
In elliptic coordinates, the exact solution for the ellipsoid 

quoted above has the property of being the first term in an ex
pansion in harmonic functions. There is therefore some advan
tage in using elliptic coordinates. They are given by (see, e. g., 
Lamb: Hydrodynamics, p. 139)

x — k /i£,

y — k \ 1 — a2 ■ J ' C2 — 1 cos (p, 

z = k I 1 — /li2 • J C2 — 1 sin ç?.

(8)

For constant C — Co> the curve in /z is an ellipse with a = 
Å’Co and b = | a2—k2. Thus, 2 k is the focal distance and Co = 
e_1. Constant pt = pi0 gives a hyperbola in C with a = kpc0 and 
b = \/k2 — a2.

We will now seek other boundaries than the ellipsoidal one. 
This can be done by giving C of the boundary as a suitable 
function of /o. In this note, we will use

C = fW = 50 + Co + C2yu2 + C4/z4. (9)

An even function of /.t has been chosen in order to describe 
nuclei with reflection symmetry. For unsvmmetric nuclei, the full 
series in // would be needed.
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For comparison with the ellipsoidal case, two different shapes 
of the nucleus will be treated, both converging into an ellipsoid 
for small parameters.

1. The volume and the major axis remain constant.
2. The volume and the quadrupole moment Qo remain 

constant.

First approximation. In the constants Cn, the change of 
volume is

d V = const. (10)

The change of the major axis is

Further,
da — A’ (Co + C2 + C4). (11)

eQ0 = {drQe(3 x2 — r*),  (12)

where e is the total charge.
For oe constant, we get in first approximation

(13)

In the following we will especially illustrate the calculations 
for the eccentricity e = 4/5, which gives a quadrupole moment of 
the same order as, though somewhat greater than, is common 
among the rare earth nuclei. This gives the following relations 
for the Cn in the two cases under consideration.

1. Co = — C2-0.1430 C4 = — C2 0.8570.

2. Co = — C2-0.0863 C4 = — C2-1.267.
(14)

The coefficients for moderate changes of the surface turn out 
to be relatively large. In the following we will therefore check 
the first order approximations of the various physical quantities 
by numerical calculations for a special surface. We choose case 1 
(constant volume and major axis) with C2 — 0.4. To first approxi
mation we get
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Fig. 1. V and a constant.
C2 = 0,4

Co = —0.0572, C4 =—0.3428.

By numerical calculation,

Co = —0.0591, C4 = —0.3409.

Fig. 1 gives the boundary 
for these last values. Fig. 2 
gives the boundary for C2 = 
— 0.2. Case 2, (constant V 
and Qo) with C2 = 0.4, is il
lustrated in Fig. 3.

In case 1 we get the fol
lowing values of Qo.

a) First approximation :

Qo = ?F[1 + C2-1.091] (15) 
5

or for

C2 = 0.4: Qo = F-0.5746.

considered. This moment mav

b) Numerical calculation

Qo = F-0.5780. (16)

Calculation of So.

It is of some interest to 
calculate also the 24-pole mo
ment of the nuclear shapes 

be defined by

fi So = < P4 > = Qe (35 x4 — 30 x2 r2 + 3 r4). (17)

For the ellipsoid, this gives

Sj = F-0.6857. (18)
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In first approximation,

+ 99 es (1 — e2) Co-99 e4(3 —e2)

+ C211 (28 e2 — 15 e4 — 3 e6) + C4 (88 + 144 e2 — 147 e4 —

Case 1. So = Sj(l + C2-0.426) = k4 0.8026. (20)

The numerically calculated value is: So = k4 0.8032.

Case 2. So = Sj(l — C2 1.883) = F-0.1692. (21)

Determination of the flow.

In elliptical coordinates, the potential equation is as follows :

d 1 d20 d „ dø
dfi 1 — /z2 d cp2 d £

(1 — £2)_ +

The general solution, free from singularities inside the boundary, 
is

= ^P8n W ?n (C) [Ans cos s cp + Bns sin S(p] , (23)
n, s

where P® is the usual spherical harmonic.
The coefficients Ans and Bns can be obtained from the bound

ary condition

(24)

which expresses the equality on the boundary of the normal 
velocities of the potential flow and of the rotation (£ = /’(/z)).

Here,

Vn = cok2 KJ---- ÆJl£----- 1 (/z + Cf (zz)) COS cp (25)
B(/z)

with

(19)

(22)

B (/z) = k |/C2 - /z2 • |/C2 —1 + (1 - ^) f (^)2. (26)
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Thus, s = 1; Bns = 0.
We get the following expression for 0:

Further :
d<I> dø C2—1 dø (1—[Pyf'tjP)
dsn dC B dpi B

Ô0
Vn shows that 0 contains the factor cos <p.Now, — =

$ $n

0 = y An I 1 - P'n (/<) I > 1 P'„ (C) COS . (28)

Before treating the more general case, we give the llow for 
the ellipsoid treated above, this time in ellipsoidal coordinates.

Then, f'(jbt) = 0, and the boundary condition gives

YAnPn' (/<) + (C2_l) P."(C)1 = (29)

For constant C = Co we get: Pn(ft) = const-/z, which means 
n — 2. Thus, for an ellipsoid, the equation is satisfied by the 
first term in the expansion, with

A 2 ----  co.
9 (2 - e2)

(30)

In the more general case, we will try to satisfy the boundary 
condition by taking into account further terms in the series for 
0. All calculations can be made explicitly. However, the practical 
difficulties rise rapidly with the number of terms. In the follow
ing, only the three first terms of 0 have been used, as they give 
an accuracy that seems satisfactory in the present case.

The three coefficients An in

& = ^An&n (31)
2,4,6

will be determined by two different methods.

A. The expressions in the boundary condition

(32) 
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are developed in power series of /z, and the coefficients for /z, 
/z3, and /z5 are identified. Thus, lhe condition is best satisfied 
along the equator of the nuclear drop. The formulae being 
comparatively long, we only give the results for e = 4/5.

A2 = A2(l — Co-2.354 + C2-1.662 + C4 1.472)

A4 = — C2- 0.00369 cok2 + C4- 0.000733 cok2

A6 = — C4-1.473-IO-4 coF.
(33)

1. Constant T and a.

A2 = A2 • ( 1 T C2 • 0.736)

A4 = — C2-4.314-10-3 a)k2

A6 = C2-1.26 IO-4 coF.
(34)

2. Constant V and Q.

A2 — A2, the coefficient for C2 being zero.

A4 = — C2- 0.00462 co F

A6 = C2-1.87-10-4 Mk2.

(35)

B. Since the accuracy of these coefficients is rather important, 
we compute them, in case 1, with C2 = 0.4 from an integral con- 

00 
dition for the flow over the boundary. The quantity V„-------

dsn 
represents the flow across the boundary owing to the error in 
the approximation. Now we try to minimize the square error 
integral.

Putting
C I W) = FW cos <p

(36)

we have the condition

W = jik \ dpi — ^An(pn(/u,y)2 = minimum. (37)
»’o
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With usual notations, we get the following system of equations:

(F ,<Pn) — , Am((pm , <Pn) •
m

(38)

The integrals are calculated numerically for C2 = 0.4. 
We obtain

A2 = 6.908-IO-2 co F

A4 = — 1.606- IO-3 co F

A6 = 6.15 • 10-5 coF.

(39)

(For this value of C2 the numerical coefficients of the first 
approximation given above are

6.768-10~2, — 1.726-10-3, 5.04-10-5, respectively).

Fig. 4 shows how F(,x) = V" | B, where B varies slowly, is 
approximated by A2ç?2 -f~ h4<y4 + A6ç>6. For comparison, the first 
term is also inserted, giving the shape of ç?2-
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Calculation of Erot.

We use the expressions above for the collective flow to calculate

Erot, which is given by the integral over - grad20-dr, where 

dx = k3 * d pd^dcpfJF — ^u2).

2. Erot = E°ofc (1 — C2 • 0.002), which means practically no
change of Erot for the change of shape characterized by con
stant Qo.

We obtain

Erot = (40)
2 J-i Ji

where

G(7,/;) = («—1)[(2>UM/'V'»'(O)2 ! (2?AUV(/«)/j»'(C))2] 

with
/?n(x) = xPn'(x) + (æ2 — l)Pw"(æ). (42)

First approximation. The terms containing A%, Al, and A4A6 can 
be neglected. In the terms with A2A4 and A2A6 we can put C = 
Co- Because of the properties of Legendre functions these inte
grals are then zero. The only non-zero term is easily calculated.

Erot = 81 U +<C»(7 e5 — 63 e3 + 70 e) + C2(3 e‘
10 k~ e ’

— 25 e3 + 28 e) + C4(5 e5 —49 e3 + 54 e) 1 /3> 1/7 • (2 — e2)’1 • (1 — e2)“1]. |

We compute Erot for the two cases, V and a constant, V and Qo 
constant.

1. EIot = E^-(l + C2-1.827).

For C2 = 0.4, the change is 73 °/0.
This means a rather strong dependence of Erot on the shape 

of the nucleus.

(41)

(43)
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Numerical calculation in case 1 for C2 = 0,4.

We will make the calculations for a finite change of the 
boundary. This, of course, implies long calculations. However, 
the great change of Erot from the first approximation makes 
this test desirable.

We write: Erot — ^AiAjKij, where (i,j) = (2, 4, 6) and the 

Kij are defined by formulae (40—42).
All calculations can be made explicitly, but the number of 

terms increases very rapidly for higher indices. Therefore all 
terms except the first are calculated by an exact integration in 
5 and a subsequent numerical integration in //.

We find the following values:

Erot = ^(A|-37.58 + 2 A2A4-81.4 + A^-5985 — 2 A2A6-616

+ 2 A4A6-1.05 • 104 + A|-3.8-106)
2 7 5

= co aq (().]793 0.0180 +0.0154 — 0.0052 — 0.0021 +0.0014)

co2ngkö
2

0.1708.

(44)

Comparing with the first approximation, which gave

we find here
Erot — EIoi’1.13,

Erot — .Erot'1.93

(45)

(46)

which shows that the first approximation is qualitatively correct, 
even if the corrections to the flow are larger than to the static 
moments.

Comparison of Qo and

As mentioned in the Introduction, the quantity which provides 
the most direct lest of the potential flow model is the ratio between 
Oø and the moment of inertia obtained from Erot-
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Case 1.

First approximation.

Qolxi = (Qo/xøo’Cl T Cg'0.355). (47)

The change would go in the direction indicated by the experi
ments for negative C2, illustrated by Fig. 2. However, in any 
case the change is small.

Finite deviation.

This should be compared with the value 1.14 of the first ap
proximation.

Case 2.

For constant V and Qo the change in Erot is insignificant.

The calculations show that, for comparatively moderate 
changes of shape of the nucleus, the quantities $, Qo, and So 
are changed appreciably. The value of Qo/3, on the contrary, 
is rather insensitive to such changes in shape which have been 
considered in these calculations.
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